Projective robust nonnegative factorization
نویسندگان
چکیده
Nonnegative matrix factorization (NMF) has been successfully used in many fields as a low-dimensional representation method. Projective nonnegative matrix factorization (PNMF) is a variant of NMF that was proposed to learn a subspace for feature extraction. However, both original NMF and PNMF are sensitive to noise and are unsuitable for feature extraction if data is grossly corrupted. In order to improve the robustness of NMF, a framework named Projective Robust Nonnegative Factorization (PRNF) is proposed in this paper for robust image feature extraction and classification. Since learned projections can weaken noise disturbances, PRNF is more suitable for classification and feature extraction. In order to preserve the geometrical structure of original data, PRNF introduces a graph regularization term which encodes geometrical structure. In the PRNF framework, three algorithms are proposed that add a sparsity constraint on the noise matrix based on L 1 / 2 norm, L 1 norm, and L 2 , 1 norm, respectively. Robustness and classification performance of the three proposed algorithms are verified with experiments on four face image databases and results are compared with state-of-the-art robust NMF-based algorithms. Experimental results demonstrate the robustness and effectiveness of the algorithms for image classification and feature extraction. © 2016 Elsevier Inc. All rights reserved.
منابع مشابه
A Modified Digital Image Watermarking Scheme Based on Nonnegative Matrix Factorization
This paper presents a modified digital image watermarking method based on nonnegative matrix factorization. Firstly, host image is factorized to the product of three nonnegative matrices. Then, the centric matrix is transferred to discrete cosine transform domain. Watermark is embedded in low frequency band of this matrix and next, the reverse of the transform is computed. Finally, watermarked ...
متن کاملA Modified Digital Image Watermarking Scheme Based on Nonnegative Matrix Factorization
This paper presents a modified digital image watermarking method based on nonnegative matrix factorization. Firstly, host image is factorized to the product of three nonnegative matrices. Then, the centric matrix is transferred to discrete cosine transform domain. Watermark is embedded in low frequency band of this matrix and next, the reverse of the transform is computed. Finally, watermarked ...
متن کاملA Projected Alternating Least square Approach for Computation of Nonnegative Matrix Factorization
Nonnegative matrix factorization (NMF) is a common method in data mining that have been used in different applications as a dimension reduction, classification or clustering method. Methods in alternating least square (ALS) approach usually used to solve this non-convex minimization problem. At each step of ALS algorithms two convex least square problems should be solved, which causes high com...
متن کاملProjective Nonnegative Matrix Factorization with α-Divergence
A new matrix factorization algorithm which combines two recently proposed nonnegative learning techniques is presented. Our new algorithm, α-PNMF, inherits the advantages of Projective Nonnegative Matrix Factorization (PNMF) for learning a highly orthogonal factor matrix. When the Kullback-Leibler (KL) divergence is generalized to αdivergence, it gives our method more flexibility in approximati...
متن کاملA Nonnegative Subspace Approach for Packet Loss Concealment
This paper presents a nonnegative subspace approach for packet loss concealment problem. The magnitude spectrogram of speech signal is projected onto nonnegative subspace using nonnegative matrix factorization algorithm. Consequently, packet loss concealment problem is transformed to linear interpolation of the projective coefficients in nonnegative subspace. Simulation examples, objective test...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Inf. Sci.
دوره 364-365 شماره
صفحات -
تاریخ انتشار 2016